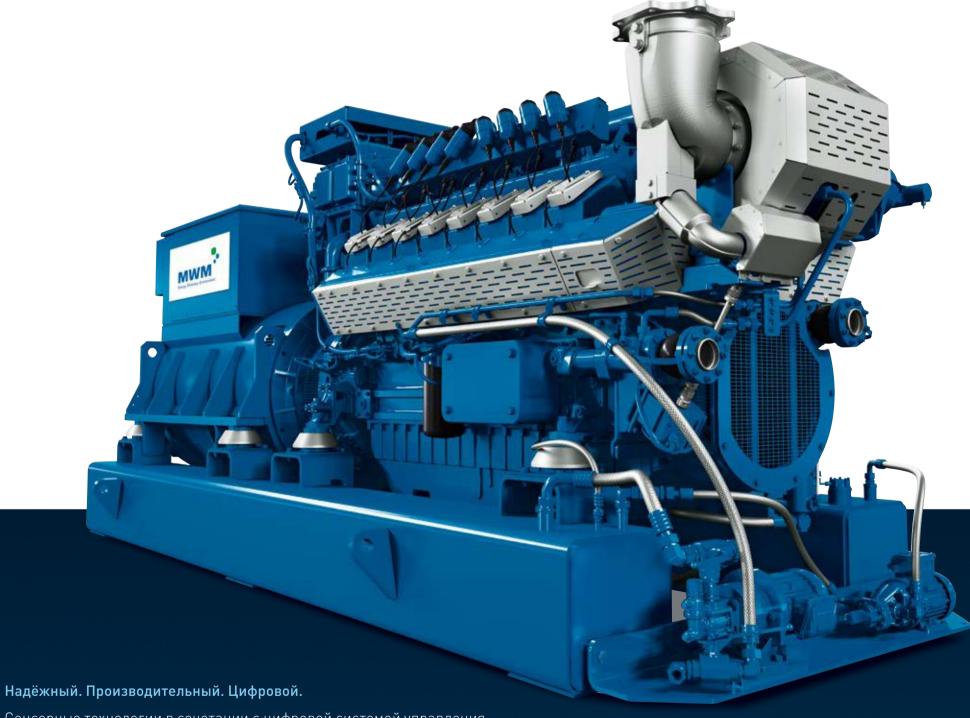

MWM DIGITALPOWER

COMPARISON AND RESPONSIBLE OF THE PROPERTY O

55016

Надёжный. Производительный. Цифровой

Вы извлечёте выгоду, используя опыт компании МWM в области разработки технологий газовых двигателей и выработки энергии, который приобретался компанией MWM на протяжении 150 лет. Будучи частью корпорации Caterpillar Inc., мы с 2011 года обладаем доступом к международным знаниям и ресурсам, которые будут Вам полезны при разработке индивидуальных комплексных решений. Воспользуйтесь безопасностью и опытом специалистов, за плечами которых тысячи установленных агрегатов по всему миру, служащих примером производительности и надёжности.


TRUE DE

Цифровое будущее производительности.

Благодаря MWM Digital Power энергетический рынок вступает в новую эпоху. Самые современные детали в сочетании с интеллектуальной и надёжной системой анализа данных обеспечат повышение производительности при проведении технического обслуживания и эксплуатации Ваших установок.

Газопоршневые установки MWM серии TCG 3016 – это больше чем просто дальнейшее усовершенствование уже испытанных газовых агрегатов MWM. Более того, новые газопоршневые установки и комплексные решения превосходно приспособлены к требованиям промышленности 4.0 и изменившимся рамочным условиям динамического энергетического рынка в эпоху глобальных производственных цепочек, и при этом они разработаны полностью по-новому.

TCG 3016. НОВЫЙ.

Сенсорные технологии в сочетании с цифровой системой управления генераторной установкой ТРЕМ обеспечат высочайшую производительность и эксплуатационную готовность. Улучшенная система управления доливом масла, а также оптимизированные цилиндры и турбокомпрессоры служат примером прочности и надёжности в эксплуатации.

MWM DIGITAL POWER

Высший уровень производительности в своём классе мощности

- ✓ электрический КПД до 43,5%
- ✓ высочайший уровень рентабельности за счёт максимально низких производственных затрат
- ✓ больше производительности за счёт цифрового управления потоком горючей газовой смеси, характеризующегося малыми потерями

• Оптимизированное потребление смазочного масла

- ✓ самое низкое потребление смазочного масла в своём классе: <0.1 г/кВт эл
 </p>
- ✓ увеличенные интервалы замены масла
- ☑ вмонтированный бак со свежим смазочным маслом

■ Концепция агрегатов с подсоединительными фланцами

- ✓ масляный бак и вмонтированный бак для долива масла в течение суток
- ✓ несущая рама с виброизоляцией обеспечивает снижение затрат на установку и большую надёжность в процессе эксплуатации
- ✓ интегрированный в агрегат увеличенный объём бака смазочного масла
- ✓ интегрированная система управления доливом масла

Усовершенствованный турбокомпрессор для широких возможностей эксплуатации

- ✓ расширенный диапазон температуры впускаемого воздуха

■ Более высокая эксплуат ационная готовность и увеличенный срок службы

- ✓ оптимизированный процесс горения топлива за счёт равномерно загруженных цилиндров
- ✓ оптимизированный процесс горения топлива с более низким пиковым давлением
- ✓ Боле е плавная работа агрегата при уменьшенной вибрации

■ Максимум надежности

✓ Очень хорошо работает в «островном» режиме

■ ТРЕМ – новая система управления

- ✓ простой интерфейс «человек-машина»
- ✓ полностью интегрированный дистанционный доступf
- ✓ расширенный объём функций, например, синхронизация, силовой выключатель и система управления электростанцией

Извлекайте выгоду из TCG 3016!

Свяжитесь с нами: www.mwm.net или info... mwm.net

Преимущества в эксплуатации и высокая рентабельность.

Более высокий КПД

Высший уровень рентабельности в своём классе мощности – за счет уникального сочетания длительного срока эксплуатации до проведения капитального ремонта (80.000 моточасов на природном газе) и выдающегося КПД (электрический КПД до 43,5.)%

Более низкий расход топлива

за счёт более высокого КПД и возможности использования разных видов топлива

Уменьшение затрат

за счёт увеличения межсервисных интервалов и более длительного срока службы

Более низкое потребление смазочного масла

ведёт к более низким производственным затратам

Более длительный срок эксплуатации

обеспечивается более высокой надежностью и доступностью

Газовый двигатель TCG 3016: Успешная эксплуатация.

Объединённые городские электростанции в г. Бад-Ольдесло (Германия)

Хольгер Херцберг, ответственное лицо на городских электростанциях: «Особое преимущество установок СЕЅ производства МWM состоит в том, что они позволяют очень хорошо реализовать индивидуальные пожелания клиентов. Всех убеждает возможность ещё большего повышения и без того хорошей рентабельности агрегата за счёт ориентации на индивидуальные потребности клиента. Уменьшенное потребление смазочного масла (< 0,1 г/кВт) также позитивно заметно. Если раньше интервал замены масла составлял приблизительно 2.000-3.000 моточасов, то сейчас этот показатель у ТСG 3016 составляет примерно 5.000 моточасов; это означает необходимость замены масла приблизительно один раз в год. Этот газопоршевый агрегат исключительно надежный с более длительным сроком службы».

MWM TCG 3016 | Введение в эксплуатацию: 2016

Биогазовая установка в г.Венторфе (Германия)

Норберт Хак, пользователь агрегата зопоршневые агрегаты ТСС 3016 эксплуатируется на моём предприятии лишь несколько месяцев, и я могу сказать, что он является для меня самым эффективным на рынке, поскольку для своего класса мощности он потребляет поразительно мало топлива (биогаз). Двигатель превосходно настроен и работает необычно тихо. уже видел много подобных агрегатов других производителей, но этот агрегат действительно продуман на высочайшем уровне, и другим производителям тут есть чему поучиться. Новейшая разработка Мангейма ТРЕМ делает управление двигателем более эффективным. Система управления ТРЕМ предлагает больше возможностей считывания данных о двигателе, что в дальнейшем улучшит функционирование установки».

MWM TCG 3016 | Введение в эксплуатацию: 2016

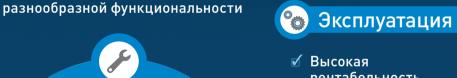
ТРЕМ. Путь в цифровую эпоху.

Посредством комплексной цифровой системы управления электростанцией TPEM (Total Plant & Energy Management) корпорация MWM задаёт новый стандарт управления энергетическими решениями.

Система управления ТРЕМ исключает необходимость в дополнительных системах управления, поскольку все данные электростанции поступают в общую систему управления агрегатом и оборудованием электростанции. Оптимальное управление электростанцией обеспечивает высокую рентабельность благодаря центральному управлению и автоматическому регулированию.

Система идёт в ногу со временем: рентабельная, эффективная и комплексная

- Единый пользовательский интерфейс
- ✓ комплексная система управления электростанцией и её настройками
- Дистанционное управление
 - ✓ дистанционное управление электростанцией на месте и через VPN-соединение посредством решения с системой визуализации данных «TPEM Remote Client», что предоставляется в комплекте
- Технология обеспечения безопасности
- ✓ соответствует новейшим стандартам
 ISO 27001
- ✓ Электроцель защиты для мониторинга электростанции (сертифицировано Союзом работников технического надзора Германии, TÜV)



- **Ш** Оптимизация
- ✓ Система управления данными и их анализ обеспечивают информацию для оптимизации работы электростанции
- ▼ Журнал истории работы агрегата

 позволяет выходить из системы и получать доступ к любым данным работы в течение всего жизненного цикла агрегата и периферийного оборудования

 ▼ Мурнал истории работы периферийного оборудования

 **Topic Particle Par

- ✓ Высокая рентабельность за счёт оптимальной системы управления электростанцией
- √ Технические решения с учётом индивидуальных потребностей
- ✓ Предоставляет возможность дистанционного управления и мониторинга электростанцией
- ✓ Использование всего потенциала агрегата для обеспечения максимальной надёжности в эксплуатации

Технические показатели 50 Гц

Тип двигателя	TCG 3016	V08	V12	V16
Диаметр цилиндра/ход поршня	ММ	132/160	132/160	132/160
Рабочий объём	ДМ ³	17,5	26,3	35,0
Количество оборотов	МИН ⁻¹	1.500	1.500	1.500
Средняя скорость поршня	м/с	8,0	8,0	8,0
Длина ¹⁾	ММ	3.100	3.830	4.200
Ширина ^{1]}	ММ	1.780	1.780	1.780
Высота 13	ММ	2.150	2.150	2.150
Вес агрегата в порожнем состоянии	ΚΓ	5.720	7.000	8.070

Применение на природном газе

 $NO_x \le 500 \, \text{Mr/Hm}^{3^{2J}}$

Тип двигателя		TCG 3016	V08	V12	V16
Электрическая мощность 3)		кВт	400	600	800
Среднее эффективное давление		бар	18,9	18,9	18,8
Тепловая мощность ⁴⁾	±8 %	кВт	404	618	821
Электрический КПД 3)		%	43,1	43,3	43,5
Тепловой КПД ³⁾		%	43,6	44,6	44,6
Общий КПД 3)		%	86,7	87,9	88,1

Применение на биогазе

 $NO_{x} \le 500 \text{ Mr/Hm}^{3^{2}}$ газ сточных вод (65 биогаз (60% CH_4 / 32 % CO_2 , остаток N_2) свалочный газ $(50\% \text{ CH}_{\text{\tiny L}} / 27\% \text{ CO}_{\text{\tiny 2}}, \text{ остаток N}_{\text{\tiny 2}})$ Минимальная теплотворная способность H_{...} = 5,0 кВт / Нм³

Тип двигателя		TCG 3016	V08	V12	V16
Электрическая мощность 3)		кВт	400	600	800
Среднее эффективное давление		бар	18,9	18,9	18,8
Тепловая мощность ⁴⁾	±8 %	кВт	394	599	791
Электрический КПД 31		%	42,8	42,9	43,1
Тепловой КПД ³⁾		%	42,2	42,8	42,6
Общий КПД 3)		%	85,0	85,7	85,7

¹⁾ Размеры при транспортировке агрегата; следует

Данные для применения на особых видах газа и приме на двух видах газа предоставляются по запросу

Ланные в этих листах с техническими показателями предоставляются только для информации и не являются гарантированными параметрами. Определяющее значение имеют данные в предложении.

Технические показатели 60 Гц

Тип двигателя	TCG 3016	V08	V12	V16	
Диаметр цилиндра/ход поршня	ММ	132/160	132/160	132/160	
Рабочий объём	$дм^3$	17,5	26,3	35,0	
Количество оборотов	МИН ⁻¹	1.800	1.800	1.800	
Средняя скорость поршня	м/с	9,6	9,6	9,6	
Длина ¹⁾	ММ	3.100	3.830	4.200	
Ширина ¹⁾	ММ	1.780	1.780	1.780	
Высота 1)	ММ	2.150	2.150	2.150	
Вес агрегата в порожнем состоянии	КГ	5.720	7.000	7.700	

Применение на природном газе

 $NO_x \le 500 \text{ Mr/Hm}^{3^{2}}$

Тип двигателя		TCG 3016	V08	V12	V16
Электрическая мощность 3)		кВт	400	600	800
Среднее эффективное давление		бар	15,8	15,7	15,7
Тепловая мощность ⁴⁾	±8 %	кВт	427	648	856
Электрический КПД 3]		%	42,1	42,4	42,6
Тепловой КПД ³⁾		%	45,0	45,7	45,5
Общий КПД 3)		%	87,1	88,1	88,1

Применение на биогазе

% CH, / \$\\$0% €С\$ОО мг/Нм^{3 2)} газ сточных вод (65 биогаз $[60\% CH_4 / 32\% CO_2, остаток N_2]$ свалочный газ (4 50% CH, / 2 7 % CO, остаток N, Минимальная теплотворная способность H_{...} = 5,0 кВт / Нм³

Тип двигателя		TCG 3016	V08	V12	V16
Электрическая мощность 3)		кВт	400	600	800
Среднее эффективное давление		бар	15,8	15,7	15,7
Тепловая мощность ⁴⁾	±8 %	кВт	414	627	827
Электрический КПД 31		%	41,7	41,7	41,9
Тепловой КПД ³⁾		%	43,3	43,6	43,3
Общий КПД 3)		%	85,0	85,3	85,2

¹⁾ Размеры при транспортировке агрегата; следует

Данные для применения на особых видах газа и прим на двух видах газа предоставляются по запросу.

Ланные в этих листах с техническими показателями предоставляются только для информации и не являются гарантированными параметрами. Определяющее значение имеют данные в предложении.

учитывать отдельно установленные детали. 2) $NO_x \leqslant 500 \, \text{мг/}_{\text{Hm}}$ 3, отработанные газы в сухом виде при $5 \% \, O_2$.

³⁾ Согласно ISO 3046-1 при U= 0,4 кВ, cosphi = 1,0 при 50 Гц, при метановом числе показатель 70 для применения на природном газе и показатель 134 (газ сточных вод) для

применения на биогазе. 4) Охлаждение отработанных газов до 120°C при применении на природном газе и до 150 °C при применении на биогазе.

учитывать отдельно установленные детали. 2) $NO_x \leqslant 500 \, \text{мг/}_{\text{Hm}}$ 3 отработанные газы в сухом виде при $5 \% \, O_2$.

³⁾ Согласно ISO 3046-1 при U= 0,48 кВ, cosphi = 1,0 при 60 Гц, при метановом числе показатель 70 для применения на природном газе и показатель 134 (газ сточных вод)

для применения на биогазе. 4) Охлаждение отработанных газов до 120°C при применении на природном газе и до 150 °C при применении на биогазе.

Группа компаний «МКС»

официальный дилер и сервис-партнер MWM в России

Россия, г. Москва, ул. Викторенко, 5, стр. 1,

БЦ «Victory Plaza», 9 этаж, офис 8а

Телефон: 8 (800) 222-66-36 E-mail: mks@mks-group.ru

www.mks-group.ru

